Math, asked by kauruppal43, 11 months ago

if a+b+c=0 then prove that (b+c/3bc)square + (c+a/3bc)square + (a+b/3ab)square=1

Answers

Answered by Anonymous
22

\huge\mathfrak\red{\underline{\underline{Solution :-}}}

\textbf{L.H.S=} \huge\sf\frac{(b+c)^2}{3bc} + \huge\sf\frac{(c+a)^2}{3ca}+\huge\sf\frac{(a+b)^2}{3ab}

________________________________

\huge\sf\frac{(-a)^2}{3bc}+\huge\sf\frac{(-b)^2}{3ca}+\huge\sf\frac{(-c)^2}{3ab}

_________________________________

\huge\sf\frac{a^2}{3bc}+ \huge\sf\frac{b^2}{3ca}+ \huge\sf\frac{c^2}{3ab}

_______________________________

\huge\sf\frac{a^3+b^3+c^3}{3abc}

__________________________

\huge\sf\frac{3abc}{3abc}

_____________________________

\huge\pink{\boxed{\boxed{Ans.=1}}}

________________________________

= R.H.S

Similar questions