If A+B+C =0,then prove that sin2A+sin2B + sin2C = 4sinA.sunB.sinC
Answers
Answered by
4
Answer:
Step-by-step explanation:
Given:
A+B+C=π
sin2A+sin2B+sin2C
2sinAcosA+(2sin(B+C)(cos(B-C)][∵sinC+sinD=Sin(C+D)cos(C-D)/2]
2sinAcosA+2sin(B+C)cos(B-C)
2sinACosA+2 SinAcos(B-C)[∵A+B+C=π]
2SinA[-cos(B+c)+cos(B-C)[∵A+B+C=π; CosA=cos[π-(B+C)]=-cosB+C
2sinA(2SinBSinc) [∵cos(A-B)-cos(A+B)=2SinASinB
hope it helped mark as brainliest please
sumit5745:
I am not getting please tell easier way
Answered by
0
HEY MATE,
FIND THE ANSWER BELOW !!
Answer:
A+B+C=π
sin2A+sin2B+sin2C
2sinAcosA+(2sin(B+C)(cos(B-C)][∵sinC+sinD=Sin(C+D)cos(C-D)/2]
2sinAcosA+2sin(B+C)cos(B-C)
2sinACosA+2 SinAcos(B-C)[∵A+B+C=π]
2SinA[-cos(B+c)+cos(B-C)[∵A+B+C=π; CosA=cos[π-(B+C)]=-cosB+C
2sinA(2SinBSinc) [∵cos(A-B)-cos(A+B)=2SinASinB
please mark me the brainliest
Similar questions
Physics,
7 months ago
Computer Science,
7 months ago
Math,
7 months ago
World Languages,
1 year ago
Chemistry,
1 year ago
Science,
1 year ago