Math, asked by sumit5745, 1 year ago

If A+B+C =0,then prove that sin2A+sin2B + sin2C = 4sinA.sunB.sinC

Answers

Answered by udayraj768oy9yd5
4

Answer:

Step-by-step explanation:

Given:

A+B+C=π

sin2A+sin2B+sin2C

2sinAcosA+(2sin(B+C)(cos(B-C)][∵sinC+sinD=Sin(C+D)cos(C-D)/2]

2sinAcosA+2sin(B+C)cos(B-C)

2sinACosA+2 SinAcos(B-C)[∵A+B+C=π]

2SinA[-cos(B+c)+cos(B-C)[∵A+B+C=π; CosA=cos[π-(B+C)]=-cosB+C

2sinA(2SinBSinc) [∵cos(A-B)-cos(A+B)=2SinASinB

hope it helped mark as brainliest please


sumit5745: I am not getting please tell easier way
udayraj768oy9yd5: can u wait for 30 min
udayraj768oy9yd5: i am slvinf for more people
udayraj768oy9yd5: solving*
sumit5745: ok
udayraj768oy9yd5: its not A+B+C = 0 its is A+B+C = pie
Answered by dvvsrao
0

HEY MATE,

FIND THE ANSWER BELOW !!

Answer:

A+B+C=π

sin2A+sin2B+sin2C

2sinAcosA+(2sin(B+C)(cos(B-C)][∵sinC+sinD=Sin(C+D)cos(C-D)/2]

2sinAcosA+2sin(B+C)cos(B-C)

2sinACosA+2 SinAcos(B-C)[∵A+B+C=π]

2SinA[-cos(B+c)+cos(B-C)[∵A+B+C=π; CosA=cos[π-(B+C)]=-cosB+C

2sinA(2SinBSinc) [∵cos(A-B)-cos(A+B)=2SinASinB

please mark me the brainliest

Similar questions