Math, asked by Qwerty8603, 10 months ago

If a+b+c=0 then show that a^3+b^3+c^3=0

Answers

Answered by shadowsabers03
1

We know that,

\displaystyle\longrightarrow\sf{a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)}

Since \displaystyle\sf{a+b+c=0,}

\displaystyle\longrightarrow\sf{a^3+b^3+c^3-3abc=0(a^2+b^2+c^2-ab-bc-ac)}

\displaystyle\longrightarrow\sf{a^3+b^3+c^3-3abc=0}

\displaystyle\longrightarrow\sf{a^3+b^3+c^3=3abc}

\displaystyle\sf{\therefore\ a+b+c=0} does not always imply \displaystyle\sf{a^3+b^3+c^3=0} but implies \displaystyle\sf{a^3+b^3+c^3=3abc.}

As a special case, \displaystyle\sf{a^3+b^3+c^3=0} if and only if at least one among \displaystyle\sf{a,\ b} and \displaystyle\sf{c} is zero.

QED

Answered by swastik3424
0

Answer:

If a+b+c=0, then a^3+b^3+c^3=3abc not 0.

Step-by-step explanation:

a^3+b^3+ç^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

If a+b+c=0,

a^3+b^3+c^3-3abc=(0)(a^2+b^2+c^2-ab-bc-ca)

=>a^3+b^3+c^3-3abc=0

=>a^3+b^3+c^3=3abc

Similar questions