Math, asked by subhongraj, 1 day ago

if a+b+c=0 then show that a²(b+c)+b²(c+a)+c²(a+b)+3abc=0​

Answers

Answered by chandan454380
6

Answer:

See the explanation

Step-by-step explanation:

Given a+b+c=0...(1)

To prove : a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc=0

LHS = a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc

       =a^2(-a)+b^2(-b)+c^2(-c)+3abc\\=-a^2-b^3-c^3+3abc\\=-(a^3+b^3+c^3)+3abc\\=-(3abc)+3abc\\=0

       = RHS

Since we know that a+b+c=0\Rightarrow a^3+b^3+c^3=3abc

Answered by hs1420072007
0

here is your answer mate pls mark me as brainlest

Attachments:
Similar questions