Math, asked by naman112iscool, 10 months ago

if a+b+c = 0 then the value of a^2/bc + b^2ca + c^2/ab = ?

Answers

Answered by shrutiwaghmode100
0

Answer:

Answer:

Value of \frac{a^{2}}{bc}+\frac{b^{2}}{ca}+\frac{c^{2}}{ab}

bc

a

2

+

ca

b

2

+

ab

c

2

= 33

Explanation:

Given a+b+c=0 ----(1)

we know the algebraic identity:

Value of \frac{a^{2}}{bc}+\frac{b^{2}}{ca}+\frac{c^{2}}{ab}

bc

a

2

+

ca

b

2

+

ab

c

2

= \frac{a^{3}}{abc}+\frac{b^{3}}{abc}+\frac{c^{3}}{abc}

abc

a

3

+

abc

b

3

+

abc

c

3

= \frac{a^{3}+b^{3}+c^{3}}{abc}

abc

a

3

+b

3

+c

3

= \frac{(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)+3abc}{abc}

abc

(a+b+c)(a

2

+b

2

+c

2

−ab−bc−ca)+3abc

= \frac{0\times(a^{2}+b^{2}+c^{2}-ab-bc-ca)+3abc}{abc}

abc

0×(a

2

+b

2

+c

2

−ab−bc−ca)+3abc

/* from (1) */

= \frac{3abc}{abc}

abc

3abc

= 33

Therefore,

Value of \frac{a^{2}}{bc}+\frac{b^{2}}{ca}+\frac{c^{2}}{ab}

bc

a

2

+

ca

b

2

+

ab

c

2

= 33

Similar questions