Math, asked by gill9040, 1 year ago

If a+b+c = 0, then write the value of
 \frac{a {}^{2} }{bc}  +  \frac{b {}^{2} }{ca} +  \frac{c {}^{2} }{ab}

Answers

Answered by ihrishi
1

Step-by-step explanation:

\frac{a {}^{2} }{bc} + \frac{b {}^{2} }{ca} + \frac{c {}^{2} }{ab} \\  = \frac{a {}^{2} \times a }{bc \times a} + \frac{b {}^{2} \times b }{ca \times b} + \frac{c {}^{2}  \times c}{ab \times c}  \\  = \frac{a {}^{3} }{abc} + \frac{b {}^{3} }{abc} + \frac{c {}^{3} }{abc}  \\ =  \frac{{a}^{3} +  {b}^{3} +  {c}^{3} }{abc} \\  =  \frac{(a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ac) + 3abc}{abc}  \\  = \frac{0 \times ( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ac) + 3abc}{abc}  \\ = \frac{0 + 3abc}{abc} \\ = \frac{ 3abc}{abc} = \: 3 \\ thus \\ \frac{a {}^{2} }{bc} + \frac{b {}^{2} }{ca} + \frac{c {}^{2} }{ab} \:  = 3

Mark it as brainliest.

Answered by Anonymous
2

Step-by-step explanation:

You know this is very simple than the logic you have given earlier..... Just see

we \: know \: if \: (a + b + c) = 0 \\ then \: a {}^{3}  + b {}^{3}  + c {}^{3}  - 3abc = 0 \\ a {}^{3}  + b {}^{3}  + c {}^{3}  = 3abc \\  \frac{a {}^{3}  + b {}^{3}  + c {}^{3} }{abc}  = 3 \\  \frac{a {}^{3} }{abc}  + \frac{b {}^{3} }{abc}  + \frac{c {}^{3} }{abc}  = 3 \\ \frac{a {}^{2} }{bc}  + \frac{b {}^{2} }{ac}  + \frac{c {}^{2} }{ab}  = 3

That is the value is 3

Similar questions