Math, asked by dexter7622, 1 year ago

If A+B+C=0 thenprove that A3+B3+C3=3ABC

Answers

Answered by pavitschatrathowtr6e
2
As we know, 
a3+b3+c3-3abc= (a+b+c)(a2+b2+c2-ab-bc-ca)
and,
(a+b+c)=0.
therefore,
a3+b3+c3-3abc= 0 x (a2+b2+c2-ab-bc-ca)

a3+b3+c3-3abc=0

or, a3+b3+c3=0

dexter7622: Thank you
Answered by dhivyaarai
0

Answer:

Identity:

a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 +b^2 +c^2 - 2ab -2bc- 2ca)

if a+b+c=0,                    = 0 *(a^2 +b^2 + c^2 -2ab-2bc-2ca)

a^3 +b^3 +c^3 -3abc    = 0

a^3+b^3+c^3                 = 3abc

Proved!

pls mark as brainliest..

Similar questions