If A+B+C=0 thenprove that A3+B3+C3=3ABC
Answers
Answered by
2
As we know,
a3+b3+c3-3abc= (a+b+c)(a2+b2+c2-ab-bc-ca)
and,
(a+b+c)=0.
therefore,
a3+b3+c3-3abc= 0 x (a2+b2+c2-ab-bc-ca)
a3+b3+c3-3abc=0
or, a3+b3+c3=0
a3+b3+c3-3abc= (a+b+c)(a2+b2+c2-ab-bc-ca)
and,
(a+b+c)=0.
therefore,
a3+b3+c3-3abc= 0 x (a2+b2+c2-ab-bc-ca)
a3+b3+c3-3abc=0
or, a3+b3+c3=0
dexter7622:
Thank you
Answered by
0
Answer:
Identity:
a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 +b^2 +c^2 - 2ab -2bc- 2ca)
if a+b+c=0, = 0 *(a^2 +b^2 + c^2 -2ab-2bc-2ca)
a^3 +b^3 +c^3 -3abc = 0
a^3+b^3+c^3 = 3abc
Proved!
pls mark as brainliest..
Similar questions
Political Science,
8 months ago
Social Sciences,
8 months ago
Math,
8 months ago
Math,
1 year ago
Science,
1 year ago
English,
1 year ago
Science,
1 year ago