If a+b+c = 0, where a,b,c are non zero real numbers, find the value of,
(a² - bc)² - (b²-ca) - (c²-ab)
Answers
Answered by
0
1) Since c = -(a+b),
a²/(bc) + b²/(ca) + c²/(ab)
= -a²/(b(a+b)) - b²/(a(a+b)) + (a+b)²/(ab)
= [-a³ - b³ + (a+b)³] / (ab (a+b))
= (3a²b + 3ab²) / (ab (a+b))
= 3ab(a + b) / (ab (a+b))
= 3.
---------------------
2) Note that (x² + bx + c)² = x⁴ + (2b) x³ + (b² + 2c) x² + (2bc)x + c².
Comparing coefficients with x⁴ + 6x³ + 19x² + 30x + 25,
2b = 6 ==> b = 3.
b² + 2c = 9 + 2c = 19 ==> c = 5.
(Check: 2bc = 30).
So, we need to add c² = 5² = 25 to make a perfect square, and
x⁴ + 6x³ + 19x² + 30x + 25 = (x² + 3x + 5)².
a²/(bc) + b²/(ca) + c²/(ab)
= -a²/(b(a+b)) - b²/(a(a+b)) + (a+b)²/(ab)
= [-a³ - b³ + (a+b)³] / (ab (a+b))
= (3a²b + 3ab²) / (ab (a+b))
= 3ab(a + b) / (ab (a+b))
= 3.
---------------------
2) Note that (x² + bx + c)² = x⁴ + (2b) x³ + (b² + 2c) x² + (2bc)x + c².
Comparing coefficients with x⁴ + 6x³ + 19x² + 30x + 25,
2b = 6 ==> b = 3.
b² + 2c = 9 + 2c = 19 ==> c = 5.
(Check: 2bc = 30).
So, we need to add c² = 5² = 25 to make a perfect square, and
x⁴ + 6x³ + 19x² + 30x + 25 = (x² + 3x + 5)².
RaghavShrivastav:
This answer is totally wrong
Similar questions