If a+b+c=1,ab+bc+ac=-1 and abc=-1.Find a³+b³+c³ ...
Answers
Answered by
2
Answer:
If a+b+c=3, a²+b²+c²=5, and a³+b³ + c³=7, then what is the value of a^4+b^4 + c^4?
Here it is given that
a + b + c = 3
a² + b² + c² = 5
a³ + b³ + c³ = 7
Now because
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
3² = 5 + 2(ab + bc + ca)
2 = (ab + bc + ca)-------(1)
again,
a³ + b³ + c³ - 3abc = (a + b + c){a² + b² + c² -(ab + bc + ca)}
7 - 3abc = 3 × { 5 - (2)} from equation (1)
7 - 3abc = 9
-3abc = 9 — 7 = 2
abc = - 2/3---- - - - - - (2)
now,
a⁴ + b⁴ + c⁴ = {a² + b² + c² }² - 2{a²b² + b²c² + c²a² }
= (5)² - 2{(ab + bc + ca) ² - 2(ab.bc +bc.ca+ ca.ab)}
= 25 - 2{ (2)² - 2abc(a + b +c)}
= 25 - 2{ 4 —2 × (-2/3) × (3)}
= 25 - 2{ 4 + 4 }
= 25 - 16
= 9
Similar questions
Environmental Sciences,
1 month ago
History,
1 month ago
Geography,
1 month ago
Hindi,
2 months ago
Math,
9 months ago