Math, asked by Byju123, 9 months ago

If (a+b+c)=–1 and a²+b²+c²=6, find the value of a³+b³+c³–3abc

Answers

Answered by Anonymous
27

{\huge{\red{\sf{Given}}}}\begin{cases}\leadsto \bf{(a+b+c)=-1}\\\leadsto \bf{a^{2}+b^{2}+c^{2}=6}\end{cases}

{\huge{\red{\sf{To\:Find}}}}\begin{cases}\leadsto \bf{a^{3}+b^{3}+c^{3}}\end{cases}

\huge\red{\underline{\bf{\green{Answer}}}}

We have,

  • (a+b+c) =-1.
  • \bold{a^{2}+b^{2}+c^{2}=6}

______________________________________

Taking \sf{\red{\mapsto (a+b+c) =-1}}

\sf{\green{\leadsto Squaring\:both\:sides}}

\sf{\implies (a+b+c) ^{2}=(-1) ^{2}}

\sf{\implies a^{2}+b^{2}+c^{2}+2(ab+bc+ca) =1}

\sf{\implies 6+2(ab+bc+ca) =1}

\sf{\implies 2(ab+bc+ca) =1-6}

\sf{\implies 2(ab+bc+ca) =5}

\sf{\underline{\purple{\mapsto (ab+bc+ca) =\frac{5}{2}}}}

______________________________________

Now, we know,

\orange{\boxed{\green{\bf{a^{3}+b^{3}+c^{3}-3abc=(a+b+c) (a^{2}+b^{2}+c^{2}-ab-bc-ca) }}}}

\sf{\pink{\leftrightarrow Putting\:(a+b+c) =-1}}

\sf{\implies a^{3}+b^{3}+c^{3}-3abc=(-1) (a^{2}+b^{2}+c^{2}-ab-bc-ca)}

\sf{\pink{\leftrightarrow Putting\:(a^{2}+b^{2}+c^{2}) =6}}

\sf{a^{3}+b^{3}+c^{3}-3abc=-1(6-(ab+bc+ca) }

\sf{\pink{\leftrightarrow Putting\:(ab+bc+ca) =\frac{5}{2}=2.5}}

\sf{\implies a^{3}+b^{3}+c^{3}-3abc=-1(6-2.5) }

\sf{\implies a^{3}+b^{3}+c^{3}-3abc=-1\times 3.5}

{\underline{\bf{\orange{\mapsto a^{3}+b^{3}+c^{3}-3abc=-3.5}}}}

Similar questions