Math, asked by Galloss2006, 2 months ago

if a+ b +c= 1 and a2 +b2 +c2= 83 find value of a3 + b3 +c3 -3abc

Answers

Answered by TarzSardana30
0

Answer:

a3+b3+c3-3×1

Step-by-step explanation:

a3+b3+c3-3

Answered by mathdude500
4

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{a + b + c = 1} \\ &\sf{ {a}^{2}  +  {b}^{2} +  {c}^{2}  = 83 } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\: find - \begin{cases} &\sf{ {a}^{3}  +  {b}^{3} +  {c}^{3}  - 3abc }  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

1. \:  \sf \:  {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca

2. \:  \sf \:  {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc= (a + b + c)( {a}^{2} +  {b}^{2} {c}^{2} - ab - bc - ca)

\large\underline{\sf{Solution-}}

 \rm :\longmapsto\:\sf \: a \:  +  \: b \:  +  \: c \:  =  \: 1

On squaring both sides, we get

\rm :\longmapsto\: \sf \:  {(a + b + c)}^{2}  = 1

\rm :\longmapsto\: \sf \: {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca = 1

 \rm :\longmapsto\:\sf \: 83  + 2ab + 2bc + 2ca = 1

 \rm :\longmapsto\:\sf \:  2ab + 2bc + 2ca = 1 - 83

 \rm :\longmapsto\:\sf \:  2ab + 2bc + 2ca =  - 82

\rm :\longmapsto\: \sf \:  ab + bc + ca =  -  \: 41

Now,

\rm :\longmapsto\:\sf \:  {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc

 \sf \:  =  \: (a + b + c)( {a}^{2} +  {b}^{2} +  {c}^{2} - ab - bc - ca)

 \sf \:  =  \: (a + b + c)( {a}^{2} +  {b}^{2} +  {c}^{2} - (ab  +  bc  +  ca) )

 \sf \:  =  \: (1)\bigg(83 - ( - 41) \bigg)

 \sf \:  =  \: 83 + 41

 \sf \:  =  \: 124

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions