If a+ b +c= 1 and a2 +b2 +c2= 83 find value of a3 + b3 +c3 -3abc
Answers
Answer:
answer :
hence , it is proved that LHS = RHS
answer is 124
hope it helps
plz mark as brainliest
have a great day
ANSWER
Given:
- a + b + c = 1
- a² + b² + c² = 83
To Find:
- Value of a³ + b³ + c³ - 3abc
Solution:
We are given that,
⇒ a² + b² + c² = 83------------(1)
⇒ a + b + c = 1 --------(2)
So,
⇒ c = 1 - a - b --------(3)
Putting the value of 'c' from (3) into (1)
⇒ a² + b² + (1 - a - b)² = 83
⇒ a² + b² + (1 + a² + b² - 2a - 2b + 2ab ) = 83
⇒ a² + b² + a² + b² - 2a - 2b + 2ab = 82
⇒ 2a² + 2b² - 2a - 2b + 2ab = 82
⇒ a² + b² - a - b + ab = 41-----------(4)
We know that,
⇒ a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c²- ab - bc - ca)
From (1), (2) and (3)
⇒ a³ + b³ + c³ - 3abc = (1)[83+ (- ab - b(1 - a - b) - (1 - a - b)a)]
⇒ a³ + b³ + c³ - 3abc = 83 + (- ab - b + ab + b² - a + a² + ab)
⇒ a³ + b³ + c³ - 3abc = 83 + (a²+ b² - a - b + ab)
From (4),
⇒ a³ + b³ + c³ - 3abc = 83 + 41
⇒ a³ + b³ + c³ - 3abc = 124
Formula Used:
- a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c²- ab - bc - ca)
Learn More: