if a+b+c=10,a2+b2+c2=29,find ab+bc+ca
Answers
Given that
To find
Square eq1 both side
because we know that
put the value of eq2
Answer:
Solution:
Given that
\begin{gathered}a + b + c = 10 ...eq1\\ \\ {a}^{2} + {b}^{2} + {c}^{2} = 29 ...eq2\\ \\\end{gathered}
a+b+c=10...eq1
a
2
+b
2
+c
2
=29...eq2
To find
\begin{gathered}ab + bc + ca \\ \\\end{gathered}
ab+bc+ca
Square eq1 both side
\begin{gathered}{(a + b + c)}^{2} = {(10)}^{2} \\ \\ {a}^{2} + {b}^{2} + {c}^{2} + 2ab + 2bc + 2ca = 100 \\ \\\end{gathered}
(a+b+c)
2
=(10)
2
a
2
+b
2
+c
2
+2ab+2bc+2ca=100
because we know that
\begin{gathered}{(x + y + z)}^{2} = {x}^{2} + {y}^{2} + {z}^{2} + 2xy + 2yz + 2xz \\ \\\end{gathered}
(x+y+z)
2
=x
2
+y
2
+z
2
+2xy+2yz+2xz
put the value of eq2
\begin{gathered}29 + 2ab + 2bc + 2ca = 100 \\ \\ 2ab + 2bc + 2ca = 100 - 29 \\ \\ 2(ab + bc + ca) = 71 \\ \\ ab + bc + ca = \frac{71}{2} \\ \\ \\ ab + bc + ca = 35.5 \\ \\\end{gathered}
29+2ab+2bc+2ca=100
2ab+2bc+2ca=100−29
2(ab+bc+ca)=71
ab+bc+ca=
2
71
ab+bc+ca=35.5