Math, asked by maryam08, 1 year ago

if a+b+c=10,a2+b2+c2=29,find ab+bc+ca

Answers

Answered by hukam0685
21
Solution:

Given that

a + b + c = 10 ...eq1\\  \\  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 29 ...eq2\\  \\
To find
ab + bc + ca   \\  \\
Square eq1 both side

 {(a + b + c)}^{2}  =  {(10)}^{2}  \\  \\  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca = 100 \\  \\
because we know that

 {(x + y + z)}^{2}  =  {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2xy + 2yz + 2xz \\  \\
put the value of eq2

29  + 2ab + 2bc + 2ca = 100 \\  \\ 2ab + 2bc + 2ca = 100 - 29 \\  \\ 2(ab + bc + ca) = 71 \\  \\ ab + bc + ca =  \frac{71}{2}  \\  \\  \\ ab + bc + ca  = 35.5 \\  \\
Answered by prempatel1616
1

Answer:

Solution:

Given that

\begin{gathered}a + b + c = 10 ...eq1\\ \\ {a}^{2} + {b}^{2} + {c}^{2} = 29 ...eq2\\ \\\end{gathered}

a+b+c=10...eq1

a

2

+b

2

+c

2

=29...eq2

To find

\begin{gathered}ab + bc + ca \\ \\\end{gathered}

ab+bc+ca

Square eq1 both side

\begin{gathered}{(a + b + c)}^{2} = {(10)}^{2} \\ \\ {a}^{2} + {b}^{2} + {c}^{2} + 2ab + 2bc + 2ca = 100 \\ \\\end{gathered}

(a+b+c)

2

=(10)

2

a

2

+b

2

+c

2

+2ab+2bc+2ca=100

because we know that

\begin{gathered}{(x + y + z)}^{2} = {x}^{2} + {y}^{2} + {z}^{2} + 2xy + 2yz + 2xz \\ \\\end{gathered}

(x+y+z)

2

=x

2

+y

2

+z

2

+2xy+2yz+2xz

put the value of eq2

\begin{gathered}29 + 2ab + 2bc + 2ca = 100 \\ \\ 2ab + 2bc + 2ca = 100 - 29 \\ \\ 2(ab + bc + ca) = 71 \\ \\ ab + bc + ca = \frac{71}{2} \\ \\ \\ ab + bc + ca = 35.5 \\ \\\end{gathered}

29+2ab+2bc+2ca=100

2ab+2bc+2ca=100−29

2(ab+bc+ca)=71

ab+bc+ca=

2

71

ab+bc+ca=35.5

Similar questions