if a+b+c=10 and a^2+ b^2+c^2=48, find the value of ab+bc+ac
Answers
Answer:
♣ Qᴜᴇꜱᴛɪᴏɴ :
If a + b + c = 10 and a² + b² + c² = 48, Find the value of ab + bc + ac
★═════════════════★
♣ ᴀɴꜱᴡᴇʀ :
ab + bc + ac = 26
★═════════════════★
♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :
We all are aware of :
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
We have :
a + b + c = 10
a² + b² + c² = 48
Substituting the values :
(10)² = a² + b² + c² + 2ab + 2bc + 2ac
100 = 48 + 2ab + 2bc + 2ac
Solve for 2ab + 2bc + 2a
Subtracting 48 from both sides :
100 - 48 = 48 + 2ab + 2bc + 2ac - 48
52 = 2ab + 2bc + 2ac
52 = 2(ab + bc + ac)
Dividing both sides by 2 :
52/2 = [2(ab + bc + ac)]/2
26 = ab + bc + ac
Switch sides :
ab + bc + ac = 26
Answer:
Answer:
a + b + c = 10
a² + b² + c² = 48
ab + bc + ac
From the formula ⤵
From question we have that
a + b + c = 10
a² + b² + c² = 48
Substitute the following values in the formula:-