Math, asked by anshu1815, 5 months ago

if a+b+c=10 and a^2+ b^2+c^2=48, find the value of ab+bc+ac​

Answers

Answered by aruanu1815
2

Answer:

♣ Qᴜᴇꜱᴛɪᴏɴ :

If a + b + c = 10 and a² + b² + c² = 48, Find the value of ab + bc + ac

★═════════════════★  

♣ ᴀɴꜱᴡᴇʀ :

ab + bc + ac  = 26

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

We all are aware of :

(a + b + c)² = a² + b² + c² + 2ab  + 2bc  +  2ac

We have :

a + b + c = 10

a² + b² + c² = 48

Substituting the values :

(10)² = a² + b² + c² + 2ab  + 2bc  +  2ac

100 = 48 + 2ab  + 2bc  +  2ac

Solve for 2ab  + 2bc  +  2a

Subtracting 48 from both sides :

100 - 48 = 48 + 2ab  + 2bc  +  2ac  - 48

52 = 2ab  + 2bc  +  2ac

52 =  2(ab + bc + ac)

Dividing both sides by 2 :

52/2 =  [2(ab + bc + ac)]/2

26  = ab + bc + ac

Switch sides :

ab + bc + ac  = 26

Answered by Anonymous
14

Answer:

Answer:

 \underline{ \sf{ \underline{ \sf{☃Given:}}}}

a + b + c = 10

a² + b² + c² = 48

 \underline{ \sf{ \underline{☃Find: }}}

ab + bc + ac

 \underline{ \sf{ \underline{☃Solution:}}}

From the formula ⤵

{ \boxed{ \sf{(a+b+c) ² = a²+b²+c²+2ab+2bc+2ca}}}

From question we have that

a + b + c = 10

a² + b² + c² = 48

Substitute the following values in the formula:-

{ \to{ \sf{ {(10)}^{2}  = 48 + 2ab + 2bc + 2ca}}}

{ \to{ \sf{100 = 48 + 2ab + 2bc + 2ca}}}

{ \to{ \sf{100 - 48 = 2ab + 2bc + 2ca}}}

{ \to{ \sf{52 = 2ab + 2bc + 2ca}}}

{ \to{ \sf{52 = 2(ab + bc + ca)}}}

{ \to{ \sf{ \frac{52}{2}  = ab + bc  + ca}}}

{ \to{ \sf{26 = ab + bc + ca}}}

{ \therefore{ \sf{Value \:  of \:  ab+bc+ca = 26}}}

Similar questions