Math, asked by Simran2003, 1 year ago

If a+b+c = 10 ,
and a²+b²+c² = 36 , Find ab+bc+ca

Answers

Answered by HappiestWriter012
23
Hey there!

Given,
( a + b + c) = 10

Also, a² + b² + c² = 36 .

So, Now ( a + b + c) = 10

Squaring on both sides.

( a + b + c) ² = 10²

( a ² + b² + c² )+ 2 ( ab + bc + ca) = 100

36 + 2 ( ab + bc + ca) = 100

2 ( ab + bc + ca) = 100 - 36

2 ( ab + bc + ca) = 64

( ab + bc + ca) = 64/2 = 32 .

Required answer is ( ab + bc + ca) = 32 .
Answered by Yuichiro13
2
Heya

We know :

 {(a + b + c)}^{2}  =  ({a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca))

Now, we know about the values of :
(a + b + c) = 10
( {a}^{2}  +  {b}^{2}  +  {c}^{2} ) = 36
Filling these in the above Expansion :

 {10}^{2}  = (36 + 2(ab + bc + ca))

 =  > 100 = 36 + 2(ab + bc + ca)

 =  > (ab + bc + ca) =  \frac{64}{2}  = 32

Hence, your desired value is :

( ab + bc + ca ) = 32

____________________________________

^_^ Hope it helps
Similar questions