Math, asked by kiana77, 10 months ago

if a+b+c=10 and a2+b2+c2=38 a3+b3+c3=160 find abc​

Answers

Answered by amitnrw
7

Given :   a+b+c=10 , a² + b² + c²   = 38 &  a³ + b³ + c³ = 160

To find :  abc

Solution:

a+b+c=10

Squaring both sides

=> (a + b + c)² = 10²

=> a² + b² + c²  + 2(ab + bc  + ca) = 100

=> 38 +  2(ab + bc  + ca) = 100

=> 2(ab + bc  + ca) = 62

=> ab + bc  + ca = 31

a³ + b³ + c³ - 3abc  =    (a + b + c)(a² + b² + c² - ab - bc - ca)

=>160  - 3abc   = (10) ( 38 - 31)

=> 3abc = 160 - 70

=> 3abc = 90

=> abc = 30

abc = 30

Additional info

one set of  a b c are 2 , 3 & 5

Learn more:

If a+b+c =11 and (ab+bc+ca)=20,then find (se+b3+c3-3abc)

https://brainly.in/question/5441734

If a, b and c are positive integers, then (a – b – c) 3 – a3 + b3 + c3 is ...

https://brainly.in/question/12887266

if a, b and c are positive integers, then (abc)^3-a^3+b^3+c^3 is ...

https://brainly.in/question/13069155

Similar questions