Math, asked by sujathamurthy78, 8 months ago

If a + b + c = 10 and ab + bc + ac = 31, Find the value of
a^3 +b^3 + c^3 – 3abc​

Answers

Answered by CaptainRisk
1

Answer is 70.

 {a}^{3}  +  {b}^{ 3}  +  {c}^{3} - 3abc  = (a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca) We have all the values except a²+b²+c². To find it, we use the identity

 {(a + b + c)}^{2}  =  {a}^{2}  + {b}^{2}   +  {c}^{2}  +  2ab + 2bc + 2ca

Putting the values we get

 {(10)}^{2}  =  {a}^{2}  + {b}^{2}   +  {c}^{2}  + 2 \times 31

100 =  {a}^{2}  + {b}^{2}   +  {c}^{2}  + 62

 {a}^{2}  + {b}^{2}   +  {c}^{2}   = 100 - 62 = 38

Now putting in the values in the first equation we get

 {a}^{3}  +  {b}^{ 3}  +  {c}^{3} - 3abc  = (a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca)

 {a}^{3}  +  {b}^{ 3}  +  {c}^{3} - 3abc  = 10 \times (38 - 31)  = 10 \times 7 = 70

Similar questions