Math, asked by mahamayamishra5427, 10 months ago

If a+b+c=10 and ab+bc+ca=20. Find the value of a² +b² + c²​

Answers

Answered by Anonymous
2

Step-by-step explanation:

(a+b+c)²=a²+b²+c²+2ab+2bc+2ca

a²+b²+c²= (a+b+c)²-2ab-2bc-2ca

a²+b²+c²= (10)²-2(ab+bc+ca)

a² +b² + c²= (10)²-2(20)

a²+b²+c²= 100-40

a²+b²+c²= 60

Answered by amansharma264
2

EXPLANATION.

  • GIVEN

a + b + c = 10

ab + bc + ca = 20

 \large \bold \green{ \underline{to \:  \: find \:  \: value \:  \: of \:  \:  {a}^{2}  +  {b}^{2}  +  {c}^{2} }}

Formula of ( a + b + c)^2

(a + b + c) {}^{2}  =  {a}^{2} +  {b}^{2} +  {c}^{2} + 2(ab \:  + bc \:  +ca)

(10) {}^{2}  =  {a}^{2} +  {b}^{2} +  {c}^{2} + 2(20)

100 =  {a}^{2} +  {b}^{2} +  {c}^{2} + 40

100 - 40 =  {a}^{2} +  {b}^{2} +  {c}^{2}

60 =  {a}^{2} +  {b}^{2} +  {c}^{2}

Therefore,

value of a^2 + b^2 + c^2 = 60

Similar questions