if a+ b+ c = 10 and ab + bc + ca = 20 the value of a3 + b3 + c3 - 3abc
Answers
Answered by
1
Step-by-step explanation:
Given,
a+b+c=10 and ab+bc+ca=20
So, to find the value of a3+b3+c3-3abc is-
By using the identity,
[a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)]
Now we need to find the value of a2+b2+c2
We also know,
=
Putting the value of a+b+c=10 and ab+bc+ca=20
=>
=>
=>
Now,
Substituting the value in the formula for a³ + b³ + c³- 3abc
a³ + b³ + c³- 3abc = ( a + b + c ) ( a² + b² + c² - ab - bc - ca )
a³ + b³ + c³- 3abc = ( a + b + c ) ( a² + b² + c² - ( ab + bc + ca ) )
a³ + b³ + c³- 3abc = ( 10 ) ( 60 - ( 20 ) )
a³ + b³ + c³- 3abc = ( 10 ) ( 40 )
a³ + b³ + c³- 3abc = 400
Hence,
a³ + b³ + c³- 3abc = 400 (Ans)
Similar questions