Math, asked by sanjay308, 1 year ago

If a+b+c=10 and ab+bc+ca=31 Find the value of a²+b²+c²

Answers

Answered by abhi569
1
(a+b+c) = 10

Square on both sides,
=========================================
by formula (a+b+c)^2 =a^2 +b^2 +c^2 +2(ab+bc+ca)
=========================================

Here,

a^2 +b^2 +c^2 +2(ab+bc+ca) = 10^2

put the given values,

a^2 +b^2 +c^2 +[2*31] = 100

a^2 +b^2+c^2 +62 = 100

a^2 +b^2 +c^2 = 100-62

a^2 +b^2 +c^2 = 38


 i hope this will help you


-by ABHAY

Swathiasapu: a+b+c=10
abhi569: so
abhi569: is it incorrect ?
Swathiasapu: Squaring on both sides then (a+b+c)2= 10×10 a^2+b^2+c^2+2 (ab+bc+ca)=100 a^2+b^2+c^2+2 (31)=100 a^2+b^2+c^2=38
Answered by ArchitectSethRollins
1
Hi friend
---------------
Your answer
---------------------

Given that : - (a + b + c) = 10 and (ab + bc + ca) = 31.

To find : - Value of (a² + b² + c²)

Now,
----------

(a + b + c)² = (a² + b² + c²) + 2(ab + bc + ca)

=> (10)² = (a² + b² + c²) + (2 × 31)

=> a² + b² + c² = 100 - 62

=> a² + b² + c² = 38

HOPE IT HELPS

Similar questions