If a+b+c=10 and ab+bc+ca=31 Find the value of a²+b²+c²
Answers
Answered by
1
(a+b+c) = 10
Square on both sides,
=========================================
by formula (a+b+c)^2 =a^2 +b^2 +c^2 +2(ab+bc+ca)
=========================================
Here,
a^2 +b^2 +c^2 +2(ab+bc+ca) = 10^2
put the given values,
a^2 +b^2 +c^2 +[2*31] = 100
a^2 +b^2+c^2 +62 = 100
a^2 +b^2 +c^2 = 100-62
a^2 +b^2 +c^2 = 38
i hope this will help you
-by ABHAY
Square on both sides,
=========================================
by formula (a+b+c)^2 =a^2 +b^2 +c^2 +2(ab+bc+ca)
=========================================
Here,
a^2 +b^2 +c^2 +2(ab+bc+ca) = 10^2
put the given values,
a^2 +b^2 +c^2 +[2*31] = 100
a^2 +b^2+c^2 +62 = 100
a^2 +b^2 +c^2 = 100-62
a^2 +b^2 +c^2 = 38
i hope this will help you
-by ABHAY
Swathiasapu:
a+b+c=10
Answered by
1
Hi friend
---------------
Your answer
---------------------
Given that : - (a + b + c) = 10 and (ab + bc + ca) = 31.
To find : - Value of (a² + b² + c²)
Now,
----------
(a + b + c)² = (a² + b² + c²) + 2(ab + bc + ca)
=> (10)² = (a² + b² + c²) + (2 × 31)
=> a² + b² + c² = 100 - 62
=> a² + b² + c² = 38
HOPE IT HELPS
---------------
Your answer
---------------------
Given that : - (a + b + c) = 10 and (ab + bc + ca) = 31.
To find : - Value of (a² + b² + c²)
Now,
----------
(a + b + c)² = (a² + b² + c²) + 2(ab + bc + ca)
=> (10)² = (a² + b² + c²) + (2 × 31)
=> a² + b² + c² = 100 - 62
=> a² + b² + c² = 38
HOPE IT HELPS
Similar questions