If a + b + c = 11 and ab + bc + ca = 17, then what is the value of a3 + b3 + c3 3abc?
Answers
Answered by
0
We know that:
x3+y3+z3-3xyz=(x+y+z) (x2+y2+z2-xy-yz-zx)
let;
x=a, y=b, z=c
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
a3+b3+c3-3abc=(6)(a2+b2+c2)-(ab+bc+ca)
a3+b3+c3-3abc=6(a2+b2+c2)-(11) (OR) (OR)
a3+b3+c3-3abc=6(a+b+c)(a+b+c)-11 =6(12)-11 =6+12-11
a3+b3+c3-3abc=6x6x6-11 =72-11 =19-11
a3+b3+c3-3abc=216-11 =61 =08
a3+b3+c3-3abc=-205
Similar questions