Math, asked by sreevani3492, 1 year ago

If a + b + c = 11 and ab + bc + ca = 17, then what is the value of a3 + b3 + c3 3abc?

Answers

Answered by ashwanisingh78p79b76
0

We know that:

x3+y3+z3-3xyz=(x+y+z) (x2+y2+z2-xy-yz-zx)

let;

x=a, y=b, z=c

a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)

a3+b3+c3-3abc=(6)(a2+b2+c2)-(ab+bc+ca)

a3+b3+c3-3abc=6(a2+b2+c2)-(11)                      (OR)              (OR)

a3+b3+c3-3abc=6(a+b+c)(a+b+c)-11              =6(12)-11       =6+12-11

a3+b3+c3-3abc=6x6x6-11                                 =72-11            =19-11

a3+b3+c3-3abc=216-11                                      =61                 =08

a3+b3+c3-3abc=-205

Similar questions