Math, asked by saniya3063, 1 year ago

If a+b+c =11 and (ab+bc+ca)=20,then find (se+b3+c3-3abc)=?

Answers

Answered by jaideeep
20
HOPE IT IS USEFUL FOR YOU

PLZ MARK AS BRAINLIST
Attachments:
Answered by amitnrw
7

a³ + b³ + c³ - 3abc = 671 if a+b+c =11 and (ab+bc+ca)=20

Step-by-step explanation:

Correct Question is

if If a+b+c =11 and (ab+bc+ca)=20

then find a³ + b³ + c³ - 3abc

a+b+c =11

Squaring both sides

a² + b² + c²  + 2ab + 2bc + 2ca  = 121

=> a² + b² + c² + 2 * 20 = 121

=> a² + b² + c² = 81

a³ + b³ + c³ - 3abc = (a + b + c)( a² + b² + c² - (ab + bc + ca))

=> a³ + b³ + c³ - 3abc = 11 ( 81 - 20)

=>  a³ + b³ + c³ - 3abc = 11 * 61

=>  a³ + b³ + c³ - 3abc = 671

Learn more:

If a + b + c = 1, a2+b2+c2=9, a3+b3+c3=1 find 1/a + 1/b + 1/c

https://brainly.in/question/11392304

If a+b+c and ab+bc+ca=10 ,then prove that a cube+ b cube + c cube ...

https://brainly.in/question/10025463

If abc are all non zero and a+b+c=0 prove that a2/bc+b2/ca+c2/ab=3

https://brainly.in/question/2632411

Similar questions