If a + b + c = 11 and ab + bc + ca = 27, then find a² + b² + c²
Answers
Answered by
0
a²+b²c²= a+b+c+2ab 2bc+2ca
= 11+2(ab+BC+ca)
= 11+2×27
=65
= 11+2(ab+BC+ca)
= 11+2×27
=65
Answered by
0
Step-by-step explanation:
a + b + c = 11
ab + bc +ca =27
find,
a ^2 +b^2 +c^2 =?
( a + b + c )^2 = a^2 + b^2 + c^2 + 2ab + 2bc +2ca
(11)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
121 = a^2 + b^2 + c^2 + 2(27)
121 = a^2 + b^2 + c^2 + 54
121 - 54 = a^2 + b^2 + c^2
67 = a^2 + b^2 + c^2
a^2 + b^2 + c^2 = 67
Similar questions