Math, asked by mittabhawana160, 1 year ago

if a+b+c=12,a^2+b^2+c^2=90, find the value of a^3+b^3+c^3-3abc

Answers

Answered by jiveshfirke4749
21
(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)
(12)^2=90+2(ab+bc+ca)
144-90=2(ab+bc+ca)
54/2=ab+bc+ca
27=ab+bc+ca

a^3-b^3-c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
a^3-b^3-c^3-3abc=(a+b+c)[a^2+b^2+c^2-(ab+bc+ca)]
a^3-b^3-c^3-3abc=12X(90-(27))
a^3-b^3-c^3-3abc=12X(90-27)
a^3-b^3-c^3-3abc=12X63
a^3-b^3-c^3-3abc=756

mittabhawana160: thx very much
Answered by yashsrini
15
given a+b+c= 12 squaring on both sides we get a^2+b^2+c^2+2ab+abc+2ac = 14490 + 2(ab+bc+ac) = 144ab +bc+ac = 144-90/2ab +bc+ac = 27now a^3+b^3+c^3-3abc = (a+b+c) (a^2+b^2+c^2 - ab - bc - ac)                                       = 12 (90 -(ab+bc+ac))                                       = 12 (90-27)                                        = 12 x 63                                        = 756 Hope this helps you  out.

mittabhawana160: thanks very much
yashsrini: You're welcome. :)
Similar questions