If a+b+c=12, a2+b2+c2=9, a3+b3+c3=6 then find the value of abc
and ab+bc+ca.
Answers
Answered by
2
Answer:
abc = 236
abc = 236ab+bc+ca = 135/2
Step-by-step explanation:
(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)
(ab+bc+ca) = ((12)^2 - 9)/2
= 135/2
We have a result ( better to be remembered ) >
a3+b3+c3 - 3abc
= (a+b+c)(a^2 + b^2 + c^2 - (ab+bc+ca))
= 12 × (9 - 135/2)
= 12 × (-117/2)
= -702
3abc = 6+702 = 708
abc = 708/3 = 236
Similar questions