If (a + b + c) = 12, ( ab+ bc+ ca)=47 then the value of a^2 + b^2+ c^2 is
Answers
Answer:
Identity to be used here:
→ ( a + b + c )² = a² + b² + c² + 2 ( ab + bc + ac )
According to the question, it is given that:
→ ( a + b + c ) = 12
→ ( ab + bc + ac ) = 47
We are required to find the value of ( a² + b² + c² ).
Comparing the given information with the identity ( a + b + c )², we get:
→ ( 12 )² = a² + b² + c² + 2 ( 47 )
→ 144 = a² + b² + c² + 94
→ a² + b² + c² = 144 - 94
→ a² + b² + c² = 50
Hence the value of ( a² + b² + c² ) is 50.
Question:-
If (a + b + c) = 12, (ab+ bc+ ca) = 47 then the value of a² + b²+ c²
Formula Used:-
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
Answer:-
Given (a + b + c) = 12 and (ab+ bc+ ca) = 47, so putting the values in the formula,
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
➞ (12)² = a² + b² + c² + 2(47)
➞ 144 = a² + b² + c² + 94
➞ 144 - 94 = a² + b² + c²
➞ a² + b² + c² = 50