if a+b+c= 12 and a^2+b^2+c^2=64,
find the value of :
ab+bc+ac
Answers
Answered by
4
Answer:
Step-by-step explanation:
Given a+b+c=12 ,
a^2+b^2+c^2=64 ,
Then ab+b c+ca=?
a+b+c=12 ,
Squaring on both sides ,
(a+b+c)^2=(12)^2 ,
a^2+b^2+c^2+2(ab+b c+ca)=144 ,
64+2 (ab+b c+ca)=144 ,
2(ab+b c+ca)=80 ,
ab+b c+ca=40 .
Hope it helps you,
follow+10 thanks=inbox!
Hope it helps!!
Answered by
0
We know a Algebraic Identity :
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
Substitute The Values
⇒ 12² = 64 + 2ab + 2bc + 2ac
⇒ 12² = 64 + 2(ab + bc + ac)
⇒ 144 = 64 + 2(ab + bc + ac)
Subtracting 64 from Both Sides
⇒ 144 - 64 = 64 + 2(ab + bc + ac) - 64
⇒ 80 = 2(ab + bc + ac)
Dividing Both Sides by 2
⇒ 80/2 = [2(ab + bc + ac)]/2
⇒ 40 = ab + bc + ac
Similar questions
English,
4 months ago
Hindi,
4 months ago
Political Science,
9 months ago
Math,
1 year ago
History,
1 year ago