if a+b+c =12 and a^2+b^2+c^2=64, find the value of ab+bc+ac
Answers
Answered by
1
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca
12^2=64+2(ab+bc+ca)
144-64=2(ab+bc+ca)
80/2=ab+bc+ca
ab+bc+ca=40
Answered by
2
We know a Algebraic Identity :
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
Substitute The Values
⇒ 12² = 64 + 2ab + 2bc + 2ac
⇒ 12² = 64 + 2(ab + bc + ac)
⇒ 144 = 64 + 2(ab + bc + ac)
Subtracting 64 from Both Sides
⇒ 144 - 64 = 64 + 2(ab + bc + ac) - 64
⇒ 80 = 2(ab + bc + ac)
Dividing Both Sides by 2
⇒ 80/2 = [2(ab + bc + ac)]/2
⇒ 40 = ab + bc + ac
Similar questions