if a + b + c = 12 and a2+ b2 + c 2= 64 find the value of ab + bc + ac
Answers
Answered by
20
As per the identity,
(a + b + c)² = a² + b² + c² + 2.a.b + 2.b.c + 2.c.a
According to question,
a + b + c = 12 and a² + b² + c² = 64.
Using this in the identity,
(12)² = 64 + 2.(a.b + b.c + a.c)
=> 2.(a.b + b.c + a.c) = 144 - 64.
=> 2.(a.b + b.c + a.c) = 80
=> (a.b + b.c + a.c) = 40.
Hope it helped you!
Don't forget to give Brainliest Answer!
(a + b + c)² = a² + b² + c² + 2.a.b + 2.b.c + 2.c.a
According to question,
a + b + c = 12 and a² + b² + c² = 64.
Using this in the identity,
(12)² = 64 + 2.(a.b + b.c + a.c)
=> 2.(a.b + b.c + a.c) = 144 - 64.
=> 2.(a.b + b.c + a.c) = 80
=> (a.b + b.c + a.c) = 40.
Hope it helped you!
Don't forget to give Brainliest Answer!
sehajcheema248:
thx neeraj
Answered by
1
We know a Algebraic Identity :
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
Substitute The Values
⇒ 12² = 64 + 2ab + 2bc + 2ac
⇒ 12² = 64 + 2(ab + bc + ac)
⇒ 144 = 64 + 2(ab + bc + ac)
Subtracting 64 from Both Sides
⇒ 144 - 64 = 64 + 2(ab + bc + ac) - 64
⇒ 80 = 2(ab + bc + ac)
Dividing Both Sides by 2
⇒ 80/2 = [2(ab + bc + ac)]/2
⇒ 40 = ab + bc + ac
Similar questions