If a+b+c= 12 and a² + b² + c²=100, find the value of ab + bc + ca.
Answers
Answered by
13
Solution:
Given Information:
→ a + b + c = 12 — (i)
→ a² + b² + c² = 100 — (ii)
Squaring both sides of equation (i), we get:
→ (a + b + c)² = 12²
Using identity (a + b + c)² = a² + b² + c² + 2(ab + bc + ac), we get:
→ a² + b² + c² + 2(ab + bc + ac) = 144
Substituting the value of a² + b² + c², we get:
→ 100 + 2(ab + bc + ac) = 144
→ 2(ab + bc + ac) = 144 - 100
→ 2(ab + bc + ac) = 44
→ ab + bc + ac = 22
★ Therefore, the value of ab + bc + ac is 22.
Learn More:
Algebraic Identities.
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- a² - b² = (a + b)(a - b)
- (a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
- (a + b)³ = a³ + 3ab(a + b) + b³
- (a - b)³ = a³ - 3ab(a - b) - b³
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
- (x + a)(x + b) = x² + (a + b)x + ab
- (x + a)(x - b) = x² + (a - b)x - ab
- (x - a)(x + b) = x² - (a - b)x - ab
- (x - a)(x - b) = x² - (a + b)x + ab
anindyaadhikari13:
Thanks for the brainliest ^_^
Similar questions