Math, asked by aarush143, 11 months ago

If a + b + C = 12 and a2 + b2 + c2 =54, find the value of ab + bc

Answers

Answered by Anonymous
2

Answer:

ab + bc + ca = 45

Step-by-step explanation:

a + b + c = 12 \:  \\  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 54 \\  ab + bc + ca \:  =  \: ? \:  \\  =  > {(a + b + c)}^{2}  = {a}^{2}  +  {b}^{2}  +  {c}^{2}   + 2(ab + bc + ca) \\  =  {(12)}^{2}  = 54 + 2(ab + bc + ca) \\  =  > 144 = 54 + 2(ab + bc + ca) \\   =  > 144 - 54 = 2(ab + bc + ca) \\  =  > 90 = 2(ab + bc + ca) \\  =  >  \frac{90}{2}  = ab + bc + ca \\  =  > ab + bc + ca  = 45

Answered by Anonymous
1

Given

a + b + c = 12

+ + = 54

To Find

The value of ab + bc + ca

ab + bc + ca = ?

\rule{200}{1}

Step by step Explanation

a + b + c = 12

Squaring of both sides

(a + b + c)² = (12)²

Using the identity

  • (a + b + c)² = + + + 2(ab + bc + ca)

a² + + + 2(ab + bc + ca) = 144

But + + = 54 (Given)

=> 54 + 2(ab + bc + ca) = 144

2(ab + bc + ca) = 144 - 54

2(ab + bc + ca) = 90

ab + bc + ca = 90/2

\boxed{ab + bc+ ca = 45}

\rule{200}{1}

Mark as Brainliest !! ✨✨

Similar questions