If a+b+c= 12 and a³+b³+c³= 90.
Find a³+b³+c³-3abc
Please answer it fast....
Answers
Answered by
0
Given (a + b + c) = 9
Squaring on both the sides, we get
(a + b + c)2 = 92
⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 81
⇒ 35 + 2(ab + bc + ca) = 81
⇒ 2(ab + bc + ca) = 81 – 35 = 46
⇒ ab + bc + ca = 23 → (1)
Recall that a3+b3+c3-3abc = (a + b + c)( a2 + b2 + c2 – ab – bc – ca)
= 9(35 – 23)
= 9(12) = 108
Squaring on both the sides, we get
(a + b + c)2 = 92
⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 81
⇒ 35 + 2(ab + bc + ca) = 81
⇒ 2(ab + bc + ca) = 81 – 35 = 46
⇒ ab + bc + ca = 23 → (1)
Recall that a3+b3+c3-3abc = (a + b + c)( a2 + b2 + c2 – ab – bc – ca)
= 9(35 – 23)
= 9(12) = 108
Answered by
2
If a+b+c= 12 and a³+b³+c³= 90.Find a³+b³+c³-3abc?
a³+b³+c³-3abc=(a+b+c) (a²+b²+c²-ab-bc-ac)
Given a+b+c=12,a²+b²+c²=90
(a+b+c)²=(a²+b²+c²)+2(ab+bc+ac)
12²=90+2×(ab+bc+ac)
54=2(ab+bc+ac)
(ab+bc+ac)=54/2=27
a³+b³+c³-3abc=12×90-(27)
=12×63
=756
#Regards...❤️
Similar questions
a+b+c = 12
Squaring both the sides we get
(a+b+c)2 = (12)2
( (a2 + b2 +c2 )+2ab +2bc +2ac )= 144
( 90 + 2(ab + bc + ac ) ) = 144
2(ab+bc+ac) = 144-90
= 54
ab+bc+ac = 54 / 2
= 27
a3+b3+c3-3abc = (a+b+c)(a2+ b2+ c2 -ab -bc -ac)
= 12 ( 90 - ( ab +bc + ac )
= 12 ( 90 - 27)
= 12 * 63
= 756