If a+b+c=12 and ab+bc+ca=47 find a square+b square+c square
Answers
Answered by
1
Answer:
50
please rate it, hope it helps
Step-by-step explanation:
(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+ac+bc)
12^2=a^2 + b^2 + c^2 + 2*47
144-94=a^2 + b^2 + c^2
a^2 + b^2 + c^2 = 50
Answered by
0
Answer:
50
Step-by-step explanation:
(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca. ---1
a+b+c =12
(a+b+c)^2= 144
ab+bc+ca=47
2ab +2bc+2ac=2(ab+bc+ac)=2*47=94
so putting in equation --1
144=a^2 +b^2+c^2 +94
144-94=a^2 +b^2+c^2
50 = a^2 +b^2+c^2
Similar questions
History,
5 months ago
Biology,
5 months ago
Math,
5 months ago
Math,
10 months ago
Science,
10 months ago
Business Studies,
1 year ago
Business Studies,
1 year ago