Math, asked by mdshamshad88087, 10 months ago

If a+b+c=12 and ab+bc+ca=47 find a square+b square+c square​

Answers

Answered by yoelwangsaputra008
1

Answer:

50

please rate it, hope it helps

Step-by-step explanation:

(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+ac+bc)

12^2=a^2 + b^2 + c^2 + 2*47

144-94=a^2 + b^2 + c^2

a^2 + b^2 + c^2 = 50

Answered by shanepritharaj93
0

Answer:

50

Step-by-step explanation:

(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca.        ---1

a+b+c =12

(a+b+c)^2= 144

ab+bc+ca=47

2ab +2bc+2ac=2(ab+bc+ac)=2*47=94

so putting in equation --1

144=a^2 +b^2+c^2 +94

144-94=a^2 +b^2+c^2

50 = a^2 +b^2+c^2

Similar questions