Math, asked by rishithacatherine, 1 year ago

if a+b+c=12 and ab+bc+ ca=47 then what is a³+b³+c³

Answers

Answered by arjunkambay
4
If, a+b+c=12 and ab+bc+ca=47
(a+b+c)^2= a2+b2+c2+2(ab+bc+ca)
(12)^2=a2+b2+c2+2(47)
144=a2+b2+c2+94
144 - 94=a2+b2+c2
50=a2+b2+c2
Now,
a3+b3+c3 - 3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
a3+b3+c3 - 3abc=(12)(50 - 47)
a3+b3+c3 - 3abc=(12)(3)
a3+b3+c3 - 3abc=36
Answered by indusinghkancha
1
Given,
A+B+C=12
Ab+BC+ca=47
Since,
(A+B+C)²=a²+b²+c²+2ab+2bc+2ca
Putting value
12²=a²+b²+c²+2(ab+BC+ca)
144=a²+b²+c²+2(47)
144=a²+b²+c²+94
144-94=a²+b²+c²
50=a²+b²+c²
:.a³+b³+c³-3abc=(a+B+C)(a²+b²+c²-ab-bc-ca)
Putting value
A³+b³+c³-3abc=12[50-(ab+BC+ca)]
A³+b³+c³-3abc=12(50-47)
A³+b³+c³-3abc=12×3
A³+b³+c³-3abc=36
A³+b³+c³=36+3abc
(ÆÑẞWĒR)

#Mærk ãß thē Bråìñlìêßt
Rëgārdß
Tèàm Káñçhâ
Similar questions