If a + b + c = 13, a^2 +
b^2 + c^2 = 69, then (ab +
bc + ca) = ?
Select one:
O
O a. 1
O b. 50
O c. 51
O d. 52
O e. 53
Answers
Answered by
1
Answer:
50 is your ans
Step-by-step explanation:
(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
2(ab+bc+ca)=(a+b+c)2-(a2+b2+c2)=169-69=100=(ab+bc+ca)=50
Answered by
0
Use formula and substitute
(a+b+c)^2 = a^2+b^2+c^2 +2(ab+bc+ca)
(13)^2 = 69 + 2(ab+bc+ca)
169-69 = 2(ab+bc+ca)
100 = 2(ab+bc+ca)
ab+bc+ca = 100/2 = 50
(a+b+c)^2 = a^2+b^2+c^2 +2(ab+bc+ca)
(13)^2 = 69 + 2(ab+bc+ca)
169-69 = 2(ab+bc+ca)
100 = 2(ab+bc+ca)
ab+bc+ca = 100/2 = 50
Similar questions