Math, asked by peehu6228, 1 day ago

If a+b+c=13 then , what is the HCF of (a-3)(b-2)(c+1)

Answers

Answered by Nobita221
0

Let a-3, b-2 and c+1 be termed as x, y, z respectively.Then by the inequality, we know that

(\frac{x + y + z}{3} ) \geqslant (xyz) \frac{1}{3}   \\  =  >  \frac{(a - 3) + (b - 2) + (c  + 1)}{3}  \geqslant (a - 3)(b - 2)(c +1) \\  =  > \frac{(a + b + c - 4)}{3}  \geqslant (a - 3)(b - 2)(c + 1) {1 \3}^{}  \\  =  >  \frac{(13 - 4)}{3}  \geqslant (a - 3)(b - 2)(c + 1) {1 \3}^{}  \\  =  > 3 \geqslant (a - 3)(b - 2)(c + 1) {1 \3}^{}  \\  =  > (3 ) {}^{3}  \geqslant (a - 3)(b  -  2)(c + 1) \\  =  > (a - 3)(b - 2)(c + 1) \leqslant 27

Thus The Maximum Value of (a-3)(b-2)(c+1) is 27

NOBITA221

Similar questions