If a+b+c=14,a^2+b^2+c^2=74,a^3+b^3+c^3=434. Find value of abc.
Answers
Answered by
12
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca) => (14)2 = 74 + 2(ab + bc + ca) => ab + bc + ca = 122 / 2 = 61
, using a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca)
434 - 3abc = 14 (74 - 61)
434 - 3abc = 14 (13)
434 - 3abc = 182
3abc = 434 - 182 = 252
Abc = 252/3 = 84
I hope this will help you
, using a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca)
434 - 3abc = 14 (74 - 61)
434 - 3abc = 14 (13)
434 - 3abc = 182
3abc = 434 - 182 = 252
Abc = 252/3 = 84
I hope this will help you
tanishavyas06:
Yes
Answered by
7
this must be the right answer
Attachments:
Similar questions