Math, asked by khadeeja5207, 11 months ago

If a + b + c = 14, ab + bc + ac = 61,find a2 + b2 + c2

Answers

Answered by sanketj
2

a + b + c = 14 ... (i)

ab + bc + ac = 61 ... (ii)

(a + b + c)² = (14)² ... (from i)

a² + b² + c² + 2(ab + bc + ac) = 196

a² + b² + c² + 2(61) = 196 ... (from ii)

a² + b² + c² + 122 = 196

a² + b² + c² = 196 - 122

a² + b² + c² = 74

Answered by hukam0685
0

 \bf \red{{a}^{2}  +  {b}^{2}  +  {c}^{2} = 74} .

Given:

  • a + b + c = 14  \: ...eq1\\
  • ab + bc + ac = 61...eq2 \\

To find:

  • Find the value of  {a}^{2}  +  {b}^{2}  +  {c}^{2}

Solution:

Identity to be used:

\bf ( {x + y + z)}^{2}  =  {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2xy + 2yz + 2xz \\

Step 1:

Squaring both sides of eq1.

( {a + b + c)}^{2}  = ( {14)}^{2}  \\

or

Expand identity in LHS

 {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ac = 196 \\

or

{a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ac) = 196 \\

Step 2:

Put the value from eq2.

{a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(61) = 196 \\

or

{a}^{2}  +  {b}^{2}  +  {c}^{2} = 196 - 122 \\

or

{a}^{2}  +  {b}^{2}  +  {c}^{2} = 74 \\

Thus,

Value is  \bf \: {a}^{2}  +  {b}^{2}  +  {c}^{2} = 74 .

Learn more:

1) if a+b+c=10,a2+b2+c2=29,find ab+bc+ca

https://brainly.in/question/2466031

2) If a- b =0.9 and ab = 0.36 find a+ b and a^2-b^2

https://brainly.in/question/2952753

Similar questions