If a + b + c = 14 & a² + b² + c² = 50, find ab + bc + ca
Answers
Answered by
14
EXPLANATION.
⇒ a + b + c = 14.
⇒ a² + b² + c² = 50.
As we know that,
Formula of :
⇒ (x + y + z)² = x² + y² + z² + 2xy + 2yz + 2zx.
⇒ (x + y + z)² = x² + y² + z² + 2(xy + yz + zx).
Using this formula in the equation, we get.
⇒ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca).
Put the values in the equation, we get.
⇒ (14)² = 50 + 2(ab + bc + ca).
⇒ 196 = 50 + 2(ab + bc + ca).
⇒ 196 - 50 = 2(ab + bc + ca).
⇒ 146 = 2(ab + bc + ca).
⇒ 73 = ab + bc + ca.
⇒ ab + bc + ca = 73.
Answered by
1
Given:-
- a + b + c = 14
- a² + b² + c² = 50
To find :-
- ab + bc + ca
Solution:-
We know that ,
________________________
Similar questions