if a+b+c = 15 , a^2+b^2+c^2 = 83, find a^3+b^3+c^3 + 3abc
Answers
Answered by
7
a + b + c = 15 and a2 + b2 + c2 = 83
Now, a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca)
Again, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
⇒ 2(ab + bc + ca) = (a + b + c)2 - (a2 + b2 + c2)
⇒ 2(ab + bc + ca) = (15)2 - 83 = 225 - 83 = 142
⇒ ab + bc + ca = 71
⇒a3 + b3 + c3 - 3abc = (a + b + c) [a2 + b2 + c2 - (ab + bc + ca)]
⇒a3 + b3 + c3 - 3abc = (15) [83 - (71)]
⇒a3 + b3 + c3 - 3abc = (15) [12] = 180
Now, a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca)
Again, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
⇒ 2(ab + bc + ca) = (a + b + c)2 - (a2 + b2 + c2)
⇒ 2(ab + bc + ca) = (15)2 - 83 = 225 - 83 = 142
⇒ ab + bc + ca = 71
⇒a3 + b3 + c3 - 3abc = (a + b + c) [a2 + b2 + c2 - (ab + bc + ca)]
⇒a3 + b3 + c3 - 3abc = (15) [83 - (71)]
⇒a3 + b3 + c3 - 3abc = (15) [12] = 180
Answered by
1
Answer:
180
Step-by-step explanation:
a + b + c = 15 and a^2 + b2^2 + c^2 = 83
Now, a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)
Again, (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
⇒ 2(ab + bc + ca) = (a + b + c)^2 - (a^2 + b^2 + c^2)
⇒ 2(ab + bc + ca) = (15)^2 - 83 = 225 - 83 = 142
⇒ ab + bc + ca = 71
⇒a^3 + b^3 + c^3 - 3abc = (a + b + c) [a^2 + b^2 + c^2 - (ab + bc + ca)]
⇒a^3 + b^3 + c^3 - 3abc = (15) [83 - 71)]
⇒a^3 + b^3 + c^3 - 3abc = (15) [12] = 180
Similar questions
Computer Science,
8 months ago
Math,
8 months ago
Math,
8 months ago
History,
1 year ago
Science,
1 year ago