if a+b+c=15, a²+b²+c²=83, then find a³+b³+c³-3abc
Answers
Answered by
3
Step-by-step explanation:
(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)
(15)^2=83+2(ab+bc+ca)
225–83=2(ab+bc+ca)
142/2=71=ab+bc+ca
a^3+b^3+c^3–3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=(15)(83–71)
=15×12
=180 , Answer
Answered by
1
Step-by-step explanation:
Given: a + b + c = 15, a² + b² + c² = 83
∴ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
⇒ 15² = 83 + 2(ab + bc + ca)
⇒ 225 - 83 = 2(ab + bc + ca)
⇒ 142 = 2(ab + bc + ca)
⇒ ab + bc + ca = 71
Now,
a³ + b³ + c³ - 3abc:
= (a + b + c)(a² + b² + c² - ab - bc - ca)
= (a + b + c)(a² + b² + c² - (ab + bc + ca))
= (15)(83 - 71)
= 180.
Hence, the value of a³+b³+c³-3abc is 180
Hope it helps!
Similar questions