if a+b+c=15 and a 2 +b 2 +c 2 =83, then find the value of a 3 +b 3 +c 3 -3abc
Answers
Answered by
261
Answer:
a³+b³+c³-3abc = 180
Explanation:
Given,
a+b+c = 15 ----(1)
a²+b²+c² = 83 ---(2)
We know the algebraic identity:
a²+b²+c²+2(ab+bc+ca) = (a+b+c)²
=> 83 + 2(ab+bc+ca) = 15²
/* from (1) & (2) */
=> 2(ab+bc+ca) = 225 - 83
=> 2(ab+bc+ca) = 142
=> ab+bc+ca = 142/2
=> ab+bc+ca = 71 ----(3)
Now ,
By the algebraic identity :
a³+b³+c³-3abc
= (a+b+c)[a²+b²+c²-(ab+bc+ca)]
= 15(83-71)
/*From (1),(2)&(3) */
= 15 × 12
= 180
Therefore,
a³+b³+c³-3abc = 180
••••
Answered by
90
180 is the value of
Given:
To find:
The value of
Solution:
Given,
Squaring both sides of the above equation, we get
Now, we know,
Putting the values of we get,
Therefore, the value of
Similar questions