Math, asked by ahaanreddyammia, 1 year ago

if a+b+c=15 and a 2 +b 2 +c 2 =83, then find the value of a 3 +b 3 +c 3 -3abc

Answers

Answered by mysticd
261

Answer:

++-3abc = 180

Explanation:

Given,

a+b+c = 15 ----(1)

++ = 83 ---(2)

We know the algebraic identity:

+++2(ab+bc+ca) = (a+b+c)²

=> 83 + 2(ab+bc+ca) = 15²

/* from (1) & (2) */

=> 2(ab+bc+ca) = 225 - 83

=> 2(ab+bc+ca) = 142

=> ab+bc+ca = 142/2

=> ab+bc+ca = 71 ----(3)

Now ,

By the algebraic identity :

++-3abc

= (a+b+c)[++-(ab+bc+ca)]

= 15(83-71)

/*From (1),(2)&(3) */

= 15 × 12

= 180

Therefore,

++-3abc = 180

Answered by presentmoment
90

180 is the value of \bold{a^{3}+b^{3}+c^{3}-3 a b c}

Given:

a+b+c=15 \\a^2  +b^2  +c^2  =83

To find:

The value of a^{3}+b^{3}+c^{3}-3 a b c =?

Solution:

Given, a+b+c=15 and a^{2}+b^{2}+c^{2}=83

a+b+c=15

Squaring both sides of the above equation, we get

\begin{array}{l}{(a+b+c)^{2}=15^{2}} \\ {a^{2}+b^{2}+c^{2}+2(a b+b c+c a)=225} \\ {83+2(a b+b c+c a)=225} \\ {2(a b+b c+c a)=225-83}\end{array}

\begin{array}{l}{2(a b+b c+c a)=142} \\ {a b+b c+c a=\frac{142}{2}} \\ {a b+b c+c a=71}\end{array}

Now, we know,

\begin{aligned} a^{3}+b^{3}+c^{3}-3 a b c &=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) \\ &=(a+b+c)\left(a^{2}+b^{2}+c^{2}-(a b+b c+c a)\right) \end{aligned}

Putting the values of a+b+c  and  a^{2}+b^{2}+c^{2}  and  ab-bc-ca, we get,

\bold{\begin{array}{l}{=(15)(83-71)} \\ {=15 \times 12} \\ {=180}\end{array}}

Therefore, the value of \bold{a^{3}+b^{3}+c^{3}-3 a b c is 180.}

Similar questions