If a + b + c = 15 and a² + b + c = 83, find the value of a + b3 + c3-3abc.
Answers
Answered by
3
HOPE THIS HELPS YOU!! ✌
Answer:
180
Step-by-step explanation:
Given,
(a+b+c)=15
(a^2+b^2+c^2)=83
We now that,
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca
15^2 = 83 + 2(ab+bc+ca)
225 - 83 = 2(ab+bc+ca)
142=2(ab+bc+ca)
\implies ab+bc+ca = 71
Also, we know that,
a^3+b^3+c^3-3abc = (a+b+c)(a^2+b^2+c^2-ab-bc-ca)
= (a+b+c)(a^2+b^2+c^2-(ab+bc+ca))
=(15)(83 - 71)
=15\times 12
=180
stay home, stay safe
Similar questions