If a + b + c = 15 and a2 + b2 + c2 = 83, find the value of a3 + b3 + c3 – 3abc.
Answers
Solution
Given :-
- a + b + c = 15 -----------(1)
- a² + b² + c² = 83 --------(2)
Find :-
- a³ + b³ + c³ - 3abc = ?
Explanation
Using Formula
★ ( x + y + z)² = x² + y² + z² + 2xy + 2yz + 2zx
★ x³ + y³ + z³ - 3xyz = (x + y + z)(x² + y² + z² - 3xyz)
________________________
Squaring both side of equ(1)
==> (a + b + c)² = 15²
==> a² + b² + c² + 2(ab + bc + ca) = 225
Keep Value by equ(2)
==> 83 + 2(ab + bc + ca) = 225
==> 2(ab + bc + ca) = 225 - 83
==> 2(ab + bc + ca) = 142
==> (ab + bc + ca) = 142/2
==> (ab + bc + ca) = 71 -------------(3)
______________________
Now, Calculate
==> (a³ + b³ + c³ - 3abc) = (a + b + c)(a² + b² + c² - ab - bc - ca)
Keep Value by equ(1) , equ(2) & equ(3)
==> (a³ + b³ + c³ - 3abc) = (15)(83 - 71)
==> (a³ + b³ + c³ - 3abc) = 15 * 12
==> (a³ + b³ + c³ - 3abc) = 180 .
[ Ans ]
_________________________
Given -
In the above Question , we have the following information given -
We have to find the value of
Solution -