if a+b+c=15 and a²+b²+c²=83 than a³+b³+c³-3abc= ??
Answers
Given, a + b + c = 15 and a2 + b2 + c2 = 83
Now, a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca)
Again, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
⇒ 2(ab + bc + ca) = (a + b + c)2 - (a2 + b2 + c2)
⇒ 2(ab + bc + ca) = (15)2 - 83 = 225 - 83 = 142
⇒ ab + bc + ca = 71
⇒a3 + b3 + c3 - 3abc = (a + b + c) [a2 + b2 + c2 - (ab + bc + ca)]
⇒a3 + b3 + c3 - 3abc = (15) [83 - (71)]
⇒a3 + b3 + c3 - 3abc = (15) [12] = 180
Step-by-step explanation:
Given: a + b + c = 15, a² + b² + c² = 83
∴ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
⇒ 15² = 83 + 2(ab + bc + ca)
⇒ 225 - 83 = 2(ab + bc + ca)
⇒ 142 = 2(ab + bc + ca)
⇒ ab + bc + ca = 71
Now,
a³ + b³ + c³ - 3abc:
= (a + b + c)(a² + b² + c² - ab - bc - ca)
= (a + b + c)(a² + b² + c² - (ab + bc + ca))
= (15)(83 - 71)
= 180.
Hence, the value of a³+b³+c³-3abc is 180
Hope it helps!