Math, asked by mickey3456, 10 months ago

if a+b+c=15 and a²+b²+c²=83 than a³+b³+c³-3abc= ??​

Answers

Answered by UnknownMaster100
0

Given, a + b + c = 15 and a2 + b2 + c2 = 83

Now, a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + c2 - ab - bc - ca)

Again, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

⇒ 2(ab + bc + ca) = (a + b + c)2 - (a2 + b2 + c2)

⇒ 2(ab + bc + ca) = (15)2 - 83 = 225 - 83 = 142

⇒ ab + bc + ca = 71

⇒a3 + b3 + c3 - 3abc = (a + b + c) [a2 + b2 + c2 - (ab + bc + ca)]

⇒a3 + b3 + c3 - 3abc = (15) [83 - (71)]

⇒a3 + b3 + c3 - 3abc = (15) [12] = 180

Answered by Salmonpanna2022
1

Step-by-step explanation:

Given: a + b + c = 15, a² + b² + c² = 83

∴ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

⇒ 15² = 83 + 2(ab + bc + ca)

⇒ 225 - 83 = 2(ab + bc + ca)

⇒ 142 = 2(ab + bc + ca)

⇒ ab + bc + ca = 71

Now,

a³ + b³ + c³ - 3abc:

= (a + b + c)(a² + b² + c² - ab - bc - ca)

= (a + b + c)(a² + b² + c² - (ab + bc + ca))

= (15)(83 - 71)

= 180.

Hence, the value of a³+b³+c³-3abc is 180

Hope it helps!

Similar questions