if (a+b+c) =15 and (ab+bc+ca) =47 find the value of (a^2+b^2+c^2)
Answers
We know that,
(a+b+c)^2 = a^2+b^2+c^2 + 2ab+2bc+2ac .
Given, (a+b+c) = 15 and (ab+bc+ac) = 47
(a+b+c)^2 = a^2+b^2+c^2 + 2ab+2bc+2ac
or, (a+b+c)^2 = a^2+b^2+c^2+2(ab+bc+ac)
By putting the respected values, we get
(15)^2 = a^2 + b^2 + c^2 + 2(47)
or, 225 - 94 = a^2 + b^2 + c^2
or, 131 = a^2 + b^2 + c^2
The value of a^2 + b^2 + c^2 is 131.
Answer: 131
Step-by-step explanation:
Given that:
(a+b+c) = 15
(ab+bc+ca) = 47
To find : a^2+b^2+c^2
we know that (a+b+c) = 15
squaring both sides we get,
(a+b+c)^2 = (15)^2
=>(a+b+c) x (a+b+c) = 225
=>a^2+ab+ac + ab+b^2+bc + ac+bc+c^2 = 225
=> a^2+b^2+c^2 + 2(ab+bc+ca) = 225
=> a^2+b^2+c^2 + 2(47) = 225 (since ab+bc+ca = 47)
=>a^2+b^2+c^2 + 94 =225
=>a^2+b^2+c^2 = 225-94
Therefore, a^2+b^2+c^2 = 131 .
Hope it helps you.