If a+b+c=15 and asquare+bsquare+csquare=83, find the value of acube+bcube+ccube-3abc
Answers
Answer:
Step-by-step explanation:
a + b + c = 15
(a + b + c)^2 = 15^2
a^2 + b^2 + c^2 + 2(ab + bc +ca) =225
83 + 2(ab + bc +ca) =225
2(ab + bc +ca) = 225 - 83
2(ab + bc +ca) = 142
ab + bc +ca = 142/2
ab + bc +ca = 71
a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 + ab + bc +ca)
a^3 + b^3 + c^3 - 3abc = (15)(83 + 71)
a^3 + b^3 + c^3 - 3abc = (15)(154)
a^3 + b^3 + c^3 - 3abc = 2310
Step-by-step explanation:
Given: a + b + c = 15, a² + b² + c² = 83
∴ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
⇒ 15² = 83 + 2(ab + bc + ca)
⇒ 225 - 83 = 2(ab + bc + ca)
⇒ 142 = 2(ab + bc + ca)
⇒ ab + bc + ca = 71
Now,
a³ + b³ + c³ - 3abc:
= (a + b + c)(a² + b² + c² - ab - bc - ca)
= (a + b + c)(a² + b² + c² - (ab + bc + ca))
= (15)(83 - 71)
= 180.
Hence, the value of a³+b³+c³-3abc is 180
Hope it helps!