Math, asked by karanvirBanwait, 1 year ago

If a+b+c=15 and
a ^{2}  + b {}^{2}  + c {}^{2}  = 83
.Find the value of
a { }^{3}  + b {}^{3}  + c {}^{3}  - 3abc

Answers

Answered by sumu27
0
Hope it helps you :)
Attachments:
Answered by Salmonpanna2022
1

Step-by-step explanation:

Given: a + b + c = 15, a² + b² + c² = 83

∴ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

⇒ 15² = 83 + 2(ab + bc + ca)

⇒ 225 - 83 = 2(ab + bc + ca)

⇒ 142 = 2(ab + bc + ca)

⇒ ab + bc + ca = 71

Now,

a³ + b³ + c³ - 3abc:

= (a + b + c)(a² + b² + c² - ab - bc - ca)

= (a + b + c)(a² + b² + c² - (ab + bc + ca))

= (15)(83 - 71)

= 180.

Hence, the value of a³+b³+c³-3abc is 180

Hope it helps!

Similar questions