If a+b+c=16 and a^2+b^2+c^2=90 then find the value of a^3+b^3+c^3-3abc
Answers
Answered by
0
state for typing by use of simple Question
Answered by
6
Answer:
(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)
(12)^2=90+2(ab+bc+ca)
144-90=2(ab+bc+ca)
54/2=ab+bc+ca
27=ab+bc+ca
a^3-b^3-c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
a^3-b^3-c^3-3abc=(a+b+c)[a^2+b^2+c^2-(ab+bc+ca)]
a^3-b^3-c^3-3abc=12X(90-(27))
a^3-b^3-c^3-3abc=12X(90-27)
a^3-b^3-c^3-3abc=12X63
a^3-b^3-c^3-3abc=756
Read more on Brainly.in - https://brainly.in/question/4043918#readmore
Similar questions