If a + b + c = 16 and a² + b² + c² = 84, then the
value of a³ + b³+ c³ – 3abc is
(1) 64
(2) -32
(3) 12
(4) 64
Answers
Answered by
2
Answer:
1258
Step-by-step explanation:
(a+b+c)^2=(a^2+b^2+c^2)+2(ab+ac+bc)
=(16)^2=(84)+2(ab+ac+bc)
⇒ 256–84=2(ab+ac+bc)
⇒ {172}{2}=ab+ac+bc
=ab+bc+ca=172/2= 86
=a^3+b^3+c^3–3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
=(a+b+c)(a^2+b^2+c^2)-(ab+ac+bc)
=(16)(84)–(86)=1258
But your options is wrong. The correct answer is 1258.
Answered by
22
Similar questions