Math, asked by humanbeing73, 2 months ago

If a + b + c = 16 and a² + b² + c² = 84, then the
value of a³ + b³+ c³ – 3abc is
(1) 64
(2) -32
(3) 12
(4) 64​

Answers

Answered by pinkiyadav99
2

Answer:

1258

Step-by-step explanation:

(a+b+c)^2=(a^2+b^2+c^2)+2(ab+ac+bc)

=(16)^2=(84)+2(ab+ac+bc)

⇒ 256–84=2(ab+ac+bc)

⇒ {172}{2}=ab+ac+bc

=ab+bc+ca=172/2= 86

=a^3+b^3+c^3–3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)

=(a+b+c)(a^2+b^2+c^2)-(ab+ac+bc)

=(16)(84)–(86)=1258

But your options is wrong. The correct answer is 1258.

Answered by vipinkumar212003
22

\blue{\mathfrak{\underline{\large{Given}}}:} \\ a+b+c=16 \\  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 84 \\ \blue{\mathfrak{\underline{\large{To \: find}}}:} \\  {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = ? \\ \blue{\mathfrak{\underline{\large{Finding}}}:} \\ a+b+c=16  - (i) \\ {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 84 - (ii)\\ \blue{\mathfrak{\underline{\large{Square \: on \: both \: sides \: in \: e {q}^{n}(i) }}}:} \\  {(a+b+c)}^{2}  =  {(16)}^{2}  \\  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca = 256 \\\blue{\mathfrak{\underline{\large{From \: e {q}^{n}(ii) }}}:}  \\ 84 + 2(ab + bc + ca) = 256 \\ ab + bc + ca =  \frac{256 - 84}{2}  \\ ab + bc + ca =  86 - (iii) \\ \\  {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc   \\  = (a+b+c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca) \\  = (a+b+c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  -( ab  + bc  + ca)) \\ \blue{\mathfrak{\underline{\large{From \: e {q}^{n} (i), \: (ii), \: and \: (iii)}}}:} \\  = 16 \times (84 - 86) \\  = 16 \times ( - 2) \\  =  - 32 \\  \\ \red{\mathfrak{\underline{\large{Hope \: It \: Helps \: You }}}} \\ \green{\mathfrak{\underline{\large{Mark \: Me \: Brainliest}}}}

Similar questions